kursor

Blue Snowflake

Jumat, 06 November 2015

TRIGONOMETRI

Assalamu'alaikum sobat..
Bagaimana dengan pelajaran trigonometri kalian? Masih bingung memahaminya. Tidak usah khawatir, ayo kita pahami bersama..


Hubungan fungsi trigonometri

TrigonometryTriangle.svg
Fungsi dasar:
\sin A = \frac{a}{c}\,
\cos A = \frac{b}{c}\,
\tan A = \frac{\sin A}{\cos A}\ = \frac{a}{b}\,
\cot A = \frac{1}{\tan A} = \frac{\cos A}{\sin A}\ = \frac{b}{a}\,
\sec A = \frac{1}{\cos A}\ = \frac{c}{b}\,
\csc A = \frac{1}{\sin A}\ = \frac{c}{a}\,
\sin {(-A)} = -\sin A
\cos {(-A)} = \cos A
\tan {(-A)} = - \tan A
\csc {(-A)} = - \csc A
\sec {(-A)} = \sec A
\cot {(-A)} = - \cot A

Identitas trigonometri

\sin^2 A + \cos^2 A = 1 \,
1 + \tan^2 A = \frac{1}{\cos^2 A} = \sec^2 A\,
1 + \cot^2 A = \frac{1}{\sin^2 A} = \csc^2 A \,

Penjumlahan

\sin (A + B) = \sin A \cos B + \cos A \sin B \,
\sin (A - B) = \sin A \cos B - \cos A \sin B \,
\cos (A + B) = \cos A \cos B - \sin A \sin B \,
\cos (A - B) = \cos A \cos B + \sin A \sin B \,
\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \,
\tan (A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \,
sin(u)+sin(v)=2sin(\frac {u+v}{2})cos(\frac{u-v}{2})
sin(u)-sin(v)=2cos(\frac {u+v}{2})sin(\frac{u-v}{2})
cos(u)+cos(v)=2cos(\frac {u+v}{2})cos(\frac{u-v}{2})
cos(u)-cos(v)=-2sin(\frac{u+v}{2})sin(\frac{u-v}{2})

Perkalian

2 \sin A \times \cos B = \sin (A + B) + \sin (A - B),
2 \cos A \times \sin B = \sin (A + B) - \sin (A - B),
2 \cos A \times \cos B = \cos (A + B) + \cos (A - B),
2 \sin A \times \sin B = - \cos (A + B) + \cos (A - B),

Rumus sudut rangkap dua

\sin 2A = 2 \sin A \cos A \,
\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A -1 = 1-2 \sin^2 A \,
\tan 2A = {2 \tan A \over 1 - \tan^2 A} = {2 \cot A \over \cot^2 A - 1} = {2 \over \cot A - \tan A} \,

Rumus sudut rangkap tiga

\sin 3A = 3 \sin A - 4 \sin^3 A \,
\cos 3A = 4 \cos^3 A - 3 \cos A \,

Rumus setengah sudut

\sin \frac{A}{2} = \pm \sqrt{\frac{1-\cos A}{2}} \,
\cos \frac{A}{2} = \pm \sqrt{\frac{1+\cos A}{2}} \,
\tan \frac{A}{2} = \pm \sqrt{\frac{1-\cos A}{1+\cos A}} = \frac {\sin A}{1+\cos A} = \frac {1-\cos A}{\sin A} \,

Aturan Sinus, Cosinus, dan Tangen

Aturan sinus

LabeledTriangle.svg
 \frac{a}{\sin A} \,=\, \frac{b}{\sin B} \,=\, \frac{c}{\sin C} \!

Turunan dari aturan sinus

Law of sines proof.svg
Luasan dari segitiga diatas dapat dirumuskan sebagai
L = \frac{1}{2}bc \sin A = \frac{1}{2}ac \sin B = \frac{1}{2}ab \sin C\,.
Kalikan persamaan diatas dengan 2/abc maka akan menjadi
\frac{2L}{abc} = \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}\,.

Aturan cosinus

Triangle with notations 2.svg
c^2 = a^2 + b^2 - 2ab\cos\gamma\ ,
a^2 = b^2 + c^2 - 2bc\cos\alpha\,
b^2 = a^2 + c^2 - 2ac\cos\beta\,

Aturan tangen

Triangle with notations 2.svg
\frac{a-b}{a+b} = \frac{\tan[\frac{1}{2}(\alpha-\beta)]}{\tan[\frac{1}{2}(\alpha+\beta)]}.

Tidak ada komentar:

Posting Komentar